Home » Main » 5 Pillars of Effective Data Management Excellence

5 Pillars of Effective Data Management Excellence

Management Enterprises today are relying more than ever on having good data with which to work. Critical business decisions, from an organization’s strategic direction to the details of its everyday operations, depend on having information that is accurate, complete, and timely.


However, achieving that level of data excellence doesn’t happen automatically. It is the result of a company actively and effectively managing its data to ensure it meets a high standard of quality.

The Importance of Data Quality

In a recent study by Gartner, responding companies estimated that inadequate data quality control was costing them on average $14.2 million per year. As data management expert Dr. Philip Russom says:

“Failing to ensure high-quality operational data may put many worthwhile business goals for operational excellence at risk.”

When the data a company depends on is inaccurate, incomplete, or inconsistent, the result is often a pattern of faulty decision making that can ultimately compromise the organization’s ability to remain competitive as market conditions change. On the other hand, when a company effectively manages its data to maintain a high level of quality, better decisions will likely follow. That typically results in significant improvements in productivity, agility, and security, as well as in customer, supplier, and partner relationships.

In addition, regulatory regimes such as the European Union’s GDPR and California’s CCPA impose a legal requirement that companies maintain a degree of data quality sufficient to ensure the integrity and security of records containing personally identifiable information.

Related:- Programming languages: Which was most popular each year?

Components of Effective Data Management

How can you manage your data to ensure that it is of the highest quality? Take a brief look at five critical components of an effective data management program.

1. Data Cleansing

Data cleansing is the process by which records that are inaccurate or corrupt are identified and removed. Common sources of such errors include mistakes in data entry, punctuation, or spelling. More generally, data cleansing is used as an umbrella term for the entire process of analyzing and correcting data records to ensure their accuracy, completeness, and consistency.

2. Data Validation

Data validation assesses whether data records are accurate and complete. Checks are made to ensure that data items are of the correct type, that there are no blank, null, duplicated, or incorrect values, that values are within the range defined for that field, etc.

3. Data Linking

With data linking, information from corresponding records in different internal datasets is combined to create a new master record containing the full scope of information available for a particular entity.

4. Data Enrichment

Data enrichment brings in third-party sources to augment your records with external information, such as geolocation, demographic, and firmographic data, that is not available internally.

5. Data Deduplication

Data deduplication is the process of removing all redundant information from your data pool. This ensures that each entity, such as a specific customer or product, is uniquely represented, thus eliminating inconsistencies between different instances of the same data.

Related:- Effective Ways to Promote Your Mobile App

How Syncsort Enables Effective Data Management

Syncsort offers a comprehensive suite of tools designed to address each component of the data management process and achieve high levels of data quality. For more than two decades, the Syncsort Trillium family of products has been an acknowledged leader in the data quality marketplace.

Trillium DQ allows you to implement data quality processes quickly and easily. It efficiently cleanses data from varied sources and facilitates data validation and linking, allowing customer data to be synthesized into a single authoritative view. It also includes 40 distinct data matching algorithms to facilitate deduplication.

Trillium Global Locator features data enrichment functionality that allows verification and consolidation of customer contact information such as age, gender, phone number, email, and mailing address. It can even add worldwide postal and geocoding data.